Comments on "Multiple transporters affect the disposition of atorvastatin and its two active hydroxy metabolites: Application of in vitro and ex situ systems".
نویسنده
چکیده
Atorvastatin (ATV) is primarily metabolized by CYP3A in the liver to form two active hydroxy metabolites. Therefore, the sequential transport system governed by hepatic uptake and efflux transporters is important for the drug disposition and metabolism. Here, we assessed the interaction of ATV with hepatic uptake transporter organic anion transporting polypeptide (Oatp) and efflux transporter multidrug resistance associated protein 2 (MRP2/Mrp2) in vitro and ex situ using the isolated perfused rat liver (IPRL). Rifampicin (RIF) was chosen as an inhibitor for Oatp in both uptake and IPRL studies. Its inhibitory effects on MRP2 and metabolism were also tested using MRP2-overexpressing cells and rat microsomes, respectively. Our results indicate that RIF effectively inhibits the Oatp-mediated uptake of ATV and its metabolites. Inhibition on MRP2-mediated efflux of ATV was also observed at a high RIF concentration. Compared with ATV alone in the IPRL, the area under the curve(s) (AUC) of ATV was significantly increased by RIF, whereas the AUC of both metabolites were also increased in a concentration-dependent manner. However, the extent of metabolism was significantly reduced, as reflected by the reduced amounts of metabolites detected in RIF-treated livers. In conclusion, inhibition of Oatp-mediated uptake seems to be the major determinant for interaction between ATV and RIF. Metabolites of ATV were subject to Oatp-mediated uptake as well, suggesting that they undergo a similar disposition pathway as the parent drug. These data emphasize the relevance of uptake transporter as being one of the major players in hepatic drug elimination, even for substrates that undergo metabolism.
منابع مشابه
Inhibitory effect of clemastine on P-glycoprotein expression and function: an in vitro and in situ study
Objective(s):Transporters have an important role in pharmacokinetics of drugs. Inhibition or induction of drug transporters activity can affect drug absorption, safety, and efficacy. P-glycoprotein (P-gp) is the most important membrane transporter that is responsible for active efflux of drugs. It is important to understand which drugs are substrates, inhibitors, or inducers of P-gp to minimize...
متن کاملLactonization is the critical first step in the disposition of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin.
In an in vitro study, we compared the cytochrome P450 (CYP)-dependent metabolism and drug interactions of the acid and lactone forms of the 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitor atorvastatin. Metabolism of atorvastatin acid and lactone by human liver microsomes resulted in para-hydroxy and ortho-hydroxy metabolites. Both substrates were metabolized mainly by CYP3A4 and CYP3A5...
متن کاملPharmacokinetics of atorvastatin and its metabolites after single and multiple dosing in hypercholesterolaemic haemodialysis patients.
BACKGROUND Patients with chronic renal failure commonly suffer from a secondary form of complex dyslipidaemia, and may benefit from lipid-lowering treatment. Atorvastatin has been shown to reduce efficiently the levels of atherogenic lipoproteins also in patients with renal failure, but pharmacokinetic data in haemodialysis patients are lacking. METHODS In this study, hypercholesterolaemic ha...
متن کاملA Pore Scale Evaluation of Produced Biosurfactants for Ex-situ Enhanced Oil Recovery
Microbial enhanced oil recovery (MEOR) is an economical method used to improve the oil recovery from reservoirs. In the MEOR techniques, by applying different microorganisms, a variety of products such as bioacid, biogas, biosurfactant, and biopolymer are generated, among which biosurfactant, one of the important metabolites, is produced by bacteria. It is worthy to note that bacteria are suita...
متن کاملEffect of Tinidazole on Norfloxacin Disposition
Background: Concomitant oral administration of NFX with TNZ may affect NFX absorption and consequently its blood concentration and pharmacological effect. Objective: The present study was undertaken to investigate the effect of TNZ on the pharmacokinetics of NFX in healthy volunteers. Methods: This study was conducted as an open-label, randomized, two-way crossover experimental design. After an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 316 3 شماره
صفحات -
تاریخ انتشار 2006